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AbstractWe consider a modi�cation of a path-following infeasible-interior-point algorithmdescribed by Wright. In the new algorithm, we attempt to improve each major iterateby reusing the coe�cient matrix factors from the latest step. We show that the modi�edalgorithm has similar theoretical global convergence properties to those of the earlieralgorithm, while its asymptotic convergence rate can be made superquadratic by anappropriate parameter choice.1 IntroductionWe describe an algorithm for solving the monotone linear complementarity problem (LCP),in which we aim to �nd a vector pair (x; y) withy =Mx+ q; (x; y) � 0; xTy = 0; (1)where q 2 IRn and M is an n � n positive semide�nite matrix. The solution set to (1) isdenoted by S, while the set Sc of strictly complementary solutions is de�ned asSc = f(x�; y�) 2 S jx� + y� > 0g:Our algorithm can be viewed as a modi�ed form of Newton's method applied to the2n � 2n system y = Mx+ q; xiyi = 0; i = 1; 2; � � � ; n, in which all the iterates (xk; yk) areconstrained to be strictly positive. For feasible starting points, this primal-dual interior-point�Mathematics and Computer Science Division, Argonne National Laboratory, 9700 South Cass Avenue,Argonne, Illinois 60439. The work of this author was based on research supported by the O�ce of Scienti�cComputing, U.S. Department of Energy, under Contract W-31-109-Eng-38.yDepartment of Mathematics and Statistics, University of Maryland Baltimore County, Baltimore, Mary-land 21228. The work of this author was based on research supported in part by the U.S. Department ofEnergy under Grant DE-FG02-93ER25171. 1



approach was �rst proposed by Kojima, Mizuno, and Yoshise [4]. Superlinearly convergentmethods of this type have been described by a number of authors, including McShane [7],Ji, Potra, and Huang [1], Ji et al. [2], and Ye and Anstreicher [19]. The paper of Ye andAnstreicher is particularly interesting because several asymptotic bounds on the steps provedthere are used in later works. It also gives a detailed development of superlinearly convergentmethods to that time.More recently, primal-dual algorithms that do not require feasible starting points havebeen the focus of active research. Zhang [21] described an algorithm with polynomial com-plexity. In later work, Potra [14], Potra and Sheng [15], Wright [16, 17, 18], and Monteiroand Wright [11] have described superlinearly convergent infeasible-interior-point methods.The algorithm we describe in this paper also falls into this class. It is an extension of the al-gorithm of Wright [18], which is in turn based on the work of Zhang [21] and Wright [16]. Asin [18], the algorithm extends immediately to mixed monotone LCP with few complications.The algorithm of this paper can be motivated by considering the following locally conver-gent algorithm for solving the system of nonlinear equations F (z) = 0, where F : IRN ! IRNis continuously di�erentiable.Choose � 2 (0; 1), I � 0, z0 2 IRN ; set k  0;loop: compute dk = �rF (zk)�1F (zk); z  zk + dk;for i = 0; 1; � � � ; I (improvement loop)compute d = �rF (zk)�1F (z);if kF (z + d)k � �kF (z)kthen z  z + delse zk+1  z; k k + 1; go to loop;end forzk+1  z; k  k + 1; go to loop.On each iteration, this method takes a single Newton step and follows it up with a numberof Newton-like steps calculated with the Jacobian rF (zk). Simple analysis shows that if z�is an isolated solution to the system F (z) = 0 with rF (z�) nonsingular, and if kz0 � z�kis small enough, then fzkg converges to z�. Moreover, the inner loop (with iteration indexi) eventually executes for all I iterations before control passes back to the main loop and,assuming that rF (z) is Lipschitz continuous at z�, the convergence has Q-order I + 2 (see,for example, [12]). Note that for each value of k, the Jacobian rF (zk) is evaluated andfactored only once and, in many contexts, the steps d calculated in the improvement loopare not expensive to compute.Our algorithm, which we describe in Section 2, is identical to that of [18] in that ittakes steps of two types|safe steps, which ensure global convergence, and fast steps, whichensure fast local convergence. As in the model algorithm above, each step is followed by anattempt to improve the new iterate without recomputing and refactoring the main coe�cient2



matrix. The inner loop terminates when it fails to make signi�cant progress or after Iiterations, whichever comes �rst. Additional complications arise because of the need tokeep the iterates strictly positive and in a wide neighborhood of the central path. Theserequirements necessitate a certain amount of quite technical analysis, which we present inSections 4 and 5. The global convergence and complexity analysis is identical to that of thealgorithm in [18], which di�ers from the present algorithm only in the lack of an improvephase. We state the relevant results, omitting most of the details, in Section 3. Somepreliminary numerical results appear in Section 6.The idea of reusing the matrix factors �rst appeared in Karmarkar, Lagarias, Slutsmanand Wang [3]. Mehrotra presented a practical implementation of a predictor-corrector al-gorithm that reuses the matrix factors in [9] and an asymptotic theoretical analysis in [8].Mehrotra's theoretical algorithm di�ers signi�cantly from the practical method. It requiresstrict feasibility of all iterates, and it uses the Mizuno-Todd-Ye [10] predictor-corrector frame-work, which con�nes the iterates to a narrow Euclidean-norm neighborhood of the centralpath and requires corrector steps (and hence extra matrix factorizations) to be performedregularly. Our algorithm achieves rapid asymptotic convergence like that described in [8]but for a wider class of problems (LCP). Moreover, our algorithm is closer to computationalpractice in its use of infeasible iterates and a much wider neighborhood of the central path.In the remainder of the paper, we use IRn+ to denote the nonnegative orthant in IRn.Subscripts on matrices and vectors indicate components, while superscripts on matrices andvectors and subscripts on scalars denote iteration numbers (usually k).2 The AlgorithmTo describe the step between successive iterates, we de�ne for any vector pair (x; y) 2IRn+ � IRn+ the following quantities:� = xTy=n; r = y �Mx� q; e = (1; 1; � � � ; 1)T ;and, for any vector x 2 IRn+,X = diag(x) = diag(x1; x2; � � � ; xn):When (x; y) = (xk; yk) (that is, the k-th iterate of the algorithm), we use rk, �k, and Xk todenote r, �, and X, respectively.During the k-th iteration of the main loop, each search direction (u; v) and step length~� is calculated as follows.Given (x; y) > 0, ~
 2 (0; 1), ~� 2 [0; 1), ~� 2 [0; 1), solve" M �IY k Xk # " uv # = " r�XY e+ ~��e # : (2)3



Set ~� = arg min�2[0;�̂]�(�) 4= (x+ �u)T (y + �v)=n; (3)where �̂ is the largest number in [0; 1] such that the following inequalities are satis�edfor all � 2 [0; �̂]:(x+ �u)T (y + �v) � (1� ~�)(1� �)xTy; if r 6= 0 (4a)(xj + �uj)(yj + �vj) � (~
=n)(x+ �u)T (y + �v); j = 1; � � � ; n: (4b)The inequality (4b) ensures that the component-wise products xjyj approach zero at ap-proximately the same rate. They stay in a wide neighborhood of the central path, wherexjyj = � for all j = 1; � � � ; n | hence the term \path-following." The inequality (4a) ensuresthat when the current point is infeasible, the decrease in infeasibility krk on the current stepis at least as great as the decrease in the complementarity gap �, modulo a factor of (1� ~�).The basic form of our algorithm, given below, is the same as the one described in Wright[18] except for the addition of the improve procedure.Given �
 2 (0; 12), 
min and 
max with 0 < 
min < 
max � 12, �� 2 (0; 12),� 2 (0; �
), and (x0; y0) with x0jy0j � 
max�0 > 0;t0  1, 
0 
max, k  0, �0 1;while �k > 0solve (2){(4) with (x; y) = (xk; yk), ~� = 0, ~� = �
tk , ~
 = 
min + �
tk(
max � 
min);if (xk + ~�u)T (yk + ~�v)=n � ��kthen �k  ~�, t tk + 1, 
  ~
;else solve (2){(4) with (x; y) = (xk; yk), ~� 2 [��; 12 ], ~� = 0, ~
 = 
k;�k  0, t tk, 
  
k;end if�k  ~�, �k  ~�, �  �k(1� �k), (x; y) (xk; yk) + �k(u; v);improve ((x; y); t; �; 
; (xk; yk));tk+1  t, �k+1  �, 
k+1  
, (xk+1; yk+1) (x; y), k  k + 1;end while.We refer to the steps that are computed with ~� = 0 as fast steps because they lead torapid local convergence, while the steps with ~� 2 [��; 12] are safe steps because they ensureglobal convergence.The improve procedure, which reuses the coe�cient matrix in (2) to improve the newiterate, takes a combination of safe and fast steps, just like the main algorithm. The main4



di�erence is that the procedure is terminated if an improvement in � of at least a factor of� 2 (�; 1) is not achieved. The user supplies the parameter � and the nonnegative integer I,where I is the maximum number of steps that can be taken in improve.improve ((x; y); t; �; 
; (xk; yk))Given � 2 (�; 1), I � 0,for i = 1; 2; � � � ; Iif � = 0 then return;solve (2){(4) with ~� = 0, ~� = �
t, ~
 = 
min + �
t(
max � 
min);if (x+ ~�u)T (y + ~�v)=n � ��then t t+ 1, 
  ~
;else solve (2){(4) with ~� 2 [��; 12 ], ~� = 0, ~
 = 
;if (x+ ~�u)T (y + ~�v)=n > �� then return;end if�  �(1 � ~�), (x; y) (x; y) + ~�(u; v);end for.In the special case I = 0, improve is vacuous and the algorithm reduces to the methodof [18]. We refer the reader to that paper for the intuitive motivation behind the use of safeand fast steps.Some of the fundamental properties of the iteration sequence (xk; yk) are not a�ected bythe inclusion of the improve procedure. We still haverk = �kr0 (5)and also the following result, which is similar to Lemma 3.1 of [17].Lemma 2.1 Suppose that the initial point is infeasible, that is, r0 6= 0. Then the positiveconstant �̂ de�ned by �̂ = 1Yk=1(1� �
k)is such that �k � �̂�k�0 = �̂krkkkr0k�0; 8k � 0:We also have the following result, which shows that the algorithm either terminates �nitelyat a solution of (1) or else generates an in�nite sequence f(xk; yk)g of strictly positive iterates.The proof is a simple modi�cation of [18, Lemma 3.2] and is omitted.Lemma 2.2 For all iterates generated by the algorithm, we have either (xk; yk) > 0 or else�k = 0.We assume throughout the remainder of the paper that �nite termination does not occur,that is, all iterates (xk; yk) and all the intermediate points (x; y) generated in the improveprocedure are strictly positive. 5



3 Global ConvergenceThe analysis of global convergence and polynomial complexity is nearly identical to that of[18, Section 3]. We need only note that (5) still applies and that all iterates (xk; yk) satisfyxkjykj � 
min�k, j = 1; � � � ; n. The intermediate points generated by improve have the sameproperties. The technical results from [18, Section 3] can therefore be applied to show thatnontrivial progress is made at each safe step. The presence of improve and the fast stepscannot hinder (and very often speed) the convergence.In this section we summarize the main results from [18, Section 3] and state the soleassumption required for global convergence, which is as follows.Assumption 1 S 6= ;.Theorem 3.1 If a safe step is taken at iteration k, then there is a constant ! > 0 such thatthe step length �k has �k � 1! :If the initial point (x0; y0) is chosen as(x0; y0) = (�xe; �ye); (6)where �x � kx�k1; �y � ky�k1; �y � kqk1; �y � kMek1�x = kMx0k1; (7)for some (x�; y�) 2 S, then ! = O(n2).Proof. See [18, Lemma 3.4, Theorem 3.5], where a di�erent de�nition of ! is used.The main global convergence result is as follows.Theorem 3.2 The complementarity gap �k converges geometrically to zero.Proof. As in Wright [18, Theorem 3.6], we can show that if a safe step is taken at iterationk, we have (xk + �ku)T (yk + �kv)=n � �1 � 14!��k;while if a fast step is taken, we have(xk + �ku)T (yk + �kv)=n � ��k:Since the complementarity gap may be decreased further by improve, we have �k+1 �(xk + �ku)T (yk + �kv)=n and therefore�k+1 � max�1� 14! ; ���k;from which the result follows.Finally, we state the polynomial complexity result.6



Theorem 3.3 [18, Corollary 3.7] Let � > 0 be given. Suppose that the starting point isde�ned by (6), (7), where �0 = �x�y � 1=�� for some constant � � 0 independent of n. Thenthere is an integer K� with K� = O(n2 log(1=�))such that �k � � for all k � K�.4 Technical ResultsIn the remainder of the paper, we turn our attention to the latter stages of the algorithm.We show that the algorithm eventually takes only fast steps (that is, the then branch ofthe main conditional statement is executed). Moreover, the improve routine eventuallytakes fast steps on all I of its iterations, so that a total of I + 1 fast steps is taken for eachfactorization of the coe�cient matrix in (2).In this section, we prove some results about the steps generated in this fast phase of thealgorithm. In particular, we look at the e�ects of the inexact coe�cient matrix in (2) on thesteps calculated within improve.We start by de�ning the two assumptions for the local convergence analysis, which willbe implicitly assumed to hold throughout the remainder of the paper.Assumption 2 Sc 6= ;.Assumption 3 S is bounded.For monotone LCP, a su�cient condition for Assumption 3 is the existence of a strictlyfeasible pair (�x; �y) such that �y = M �x+ q, (�x; �y) > 0. This can be seen from the fact that forany (x�; y�) 2 S (x� � �x)T (y� � �y) = (x� � �x)TM(x� � �x) � 0;implying �xTy� + �yTx� � �xT �y:By choosing any particular strictly complementary solution (x�; y�), we can de�ne indexsets B and N by B = fj jx�j > 0g; N = fj j y�j > 0g:It is well known that the global convergence of the algorithm guarantees that the iterationsequence f(xk; yk)g approaches the solution set S (see the error bound result of Mangasar-ian [6], for example). Therefore, Assumption 3 implies the boundedness of the iterationsequence f(xk; yk)g, as given in the following lemma.Lemma 4.1 There is a positive constant C3 such that k(xk; yk)k � C3 for all k � 0.7



The next two results are simple modi�cations of results from Wright [18, Section 4].Since we will apply these results to intermediate points generated by improve as well as tothe main iterates (xk; yk), we state them in a more general form than in [18]. The proofsare, however, not a�ected. Boundedness of the iteration sequence is not necessary for eitherresult, and neither is Assumption 3.Lemma 4.2 ([18, Lemma 4.1]) Let (x; y) � 0 be such thatr = y �Mx� q = �r0 for some � 2 [0; 12 ];and � = xTy=n � �̂��0 for this value of �. Then for some constant C4 > 0 we havekxNk � C4�; kyBk � C4�: (8)Lemma 4.3 Let (x; y) be any point with the properties de�ned in Lemma 4.2, and supposein addition that xjyj � 
min�. Let (�u; �v) be the search direction obtained by solving" M �IY X # " �u�v # = " r�XY e+ ~��e # ; (9)where ~� 2 [0; 1). Then there exists a positive constant C5 such thatk�uNk � C5�; k�vBk � C5�: (10)If in addition ~� = 0, there is a constant C6 > 0 such thatk�uBk � C6�; k�vNk � C6�: (11)Proof. Follows from Lemma 4.2 and Theorem 4.5 of [18].We now turn to the \approximate" fast steps computed by (2), where (x; y) is eitherthe current iterate (xk; yk) or some intermediate point generated in the call to improve atiteration k. It is obvious from the algorithm de�nition that we have� = xTy=n � �k: (12)We also assume that the point (x; y) is not too far from (xk; yk) in the sense that there is aconstant � � 1 independent of k such thatk(xk � x; yk � y)k � ��k: (13)Later, in Theorem 5.1, we choose a particular value of � that ensures that (13) is eventu-ally satis�ed by all intermediate points generated by the procedure improve. Hence, theremaining results in this section apply to all iterates visited during the improve phase.The following result describes some characteristics of the actual search direction (u; v)calculated from (2), partly in terms of the exact search direction (�u; �v) that satis�es (9).8



Lemma 4.4 Let (x; y) be a vector pair satisfying the assumptions of Lemma 4.3 and, inaddition, the properties (12) and (13). Then if ~� = 0, there are positive constants C7, C8,and C9 independent of k and � such that the following bounds are satis�ed:ku� �uk � C7��; kv � �vk � C7��; (14)k(u; v)k � C8��; (15)k�uN � uNk � C9���k; k�vB � vBk � C9���k: (16)Proof. From (2), we have that" M �IY k Xk # " uv # = " r�XY e # ; (17)while from (9), we have " M �IY X # " �u�v # = " r�XY e # ; (18)and therefore " M �IY k Xk # " �u�v # = " r�XY e+ (Y k � Y )�u+ (Xk �X)�v # : (19)From (17) and (19) we obtain" M �IY k Xk # " �u� u�v � v # = " 0(Y k � Y )�u+ (Xk �X)�v # : (20)Now from (13) and by applying Lemma 4.3 to (18), there is a constant �C7 independent of kand � such that k(Y k � Y )�u+ (Xk �X)�vk � �C7���k: (21)De�ning Dk = (Xk)�1=2(Y k)1=2;and multiplying the lower block in the system (20) by (XkY k)�1=2, we obtainDk(�u� u) + (Dk)�1(�v � v) = (XkY k)�1=2[(Y k � Y )�u+ (Xk �X)�v]: (22)Using the upper block of (20), we have (�v � v) = M(�u� u), and so it follows from positivesemide�niteness of M that (�u� u)T (�v � v) � 0: (23)By taking the Euclidean norm of both sides of (22), and using (23), we havekDk(�u� u)k2 + k(Dk)�1(�v � v)k2 � k(XkY k)�1=2k2k(Y k � Y )�u+ (Xk �X)�vk2;9



Therefore kDk(�u� u)k � k(XkY k)�1=2kk(Y k � Y )�u+ (Xk �X)�vk;k(Dk)�1(�v � v)k � k(XkY k)�1=2kk(Y k � Y )�u+ (Xk �X)�vk:Now since xkjykj � 
min�k, we havek(XkY k)�1=2k = maxj=1;���;n (xkjykj )�1=2 � 
�1=2min ��1=2k :Therefore from (21) we have kDk(�u� u)k � �C7�
�1=2min ��1=2k :Taking any j = 1; � � � ; n, we �nd that����� (ykj )1=2(xkj )1=2 (�uj � uj)����� � kDk(�u� u)k � �C7�
�1=2min ��1=2k :Hence, j�uj � ujj � maxj=1;���;n (xkj )1=2(ykj )1=2 �C7�
�1=2min ��1=2k� maxj=1;���;n xkj(xkjykj )1=2 �C7�
�1=2min ��1=2k� C3
1=2min�k1=2 �C7�
�1=2min ��1=2k� C7pn��;for C7 de�ned in an obvious way. We have proved the �rst inequality in (14); the proof ofthe second inequality is similar.For (16), we repeat the logic above to obtain for i 2 N thatj�uj � ujj � (xkj )1=2(ykj )1=2 �C7�
�1=2min ��1=2k� xkj(xkjykj )1=2 �C7�
�1=2min ��1=2k� C4�k
1=2min�1=2k �C7�
�1=2min ��1=2k� C9pn���k;10



where C9 is de�ned appropriately. The bound for k�vB � vBk follows similarly.To prove (15), we have from Lemma 4.3 and (14) thatk(u; v)k � k(�u; �v)k+ k(u� �u; v � �v)k � 2(C5 + C6)� + 2C7�� � C8��;where we have de�ned C8 = 2(C5 + C6 + C7) and used the assumption that � � 1.We now state the main result of this section, in which we obtain an estimate for the steplength ~� along a (possibly approximate) fast step direction (u; v). The point (x; y) consideredin this theorem represents either the main iterate (xk; yk) itself or one of the intermediatepoints generated by improve during iteration k. The following positive constants, all ofwhich are independent of k and �, are used in this result.�C10 = C9(C3 + C6) + C7(C4 + C5)C10 = 2(C5C6 + �C10 + C7C9)C12 = 2C10(1� �
)(
max � 
min)C13 = 2(C3C9 + C4C7 + C28);C14 = C12 + C13=n:Theorem 4.5 Let (x; y) be a point that satis�es the assumptions of Lemma 4.4, and inaddition � � min 1; nC13�2! : (24)Let t be a positive integer such that for 
 de�ned by
 = 
min + �
t�1(
max � 
min)we have xjyj � 
� for j = 1; � � � ; n, and suppose for this value of t thatC14�2�k�
t � �: (25)Then if a fast step is attempted from the point (x; y) with~� = 0; ~� = �
t; ~
 = 
min + �
t(
max � 
min);and the search direction (u; v) is calculated from (2), the resulting step length ~� obtainedfrom (2), (3), and (4) satis�es ~� � 1� C12�2�k�
t :Moreover, the fast step is accepted with(x+ ~�u)T (y + ~�v)=n � C14�2�k�
t �: (26)11



Proof. The proof is in three stages. First, we show that the tests (4) are satis�ed for all� in the range "0; 1 �C12�2�k�
t # : (27)Second, we show that �(�) de�ned by (3) is decreasing on the interval � 2 [0; 1]. Third, weshow that �(~�) � C14�2�k�
t � � ��; (28)which proves the result.We �rst consider the condition (4a). From the left-hand side, we obtain(x+ �u)T (y + �v)= (x+ ��u+ �(u � �u))T (y + ��v + �(v � �v))= xTy(1� �) + �2�uT �v + �(x+ ��u)T (v � �v) + �(y + ��v)T (u� �u) (29)+�2(u� �u)T (v � �v):Now, using Lemma 4.1 and the inequalities (8), (10), (11), (14), (15), and (16), we havej�uT �vj � 2C5C6�2 � 2C5C6��kand j(u� �u)T (y + ��v)j � kuN � �uNk(kyNk+ k�vNk) + kuB � �uBk(kyBk+ k�vBk)� C9���k(C3 + C6�) + C7��2(C4 + C5)� �C10���k;where we have used � � 1 and � � �k to derive the last inequality. Similarly, we havej(v � �v)T (x+ ��u)j � �C10���k;while for the remaining term in (29) we have from Lemma 4.4 thatj(u� �u)T (v � �v)j � 2C7C9�2�2�k � 2C7C9�2��k:Hence, since � � 1, we have from the de�nition of C10 that���(x+ �u)T (y + �v)� (1� �)xTy��� � C10�2��k: (30)Since ~� = �
t, we have that (4a) is satis�ed provided thatC10�2��k � (1� �)�
tn�;which is certainly true provided that1 � � � C10�2�kn�
t :12



From the de�nition of C12, since 1� �
 and 
max � 
min both lie in the range (0; 1), we haveC10�2�kn�
t � C12�2�k�
t ;so the inequality (4a) certainly holds for all � in the range (27).Turning to the second inequality (4b), we have by an argument similar to the one abovethat (xj + �uj)(yj + �vj) � xjyj(1� �)� C10�2��k � 
�(1 � �)� C10�2��k;while from (30), we have(x+ �u)T (y + �v)=n � (1 � �)�+ C10�2��k=n:Hence, the inequality (4b) holds provided that~
�(1 � �) + C10�2��k(~
=n) � 
�(1 � �) � C10�2��k;which is certainly true whenever the inequality(
 � ~
)(1 � �) � 2C10�2�k (31)holds. Since
 � ~
 = h
min + �
t�1(
max � 
min)i� h
min + �
t(
max � 
min)i = �
t�1(1� �
)(
max � 
min);we �nd that (31) holds whenever1 � � � 2C10�2�k�
t�1(1� �
)(
max � 
min) ;which, by de�nition of C12, is true for � in the range (27).For the second part of the proof, we show that �(�) de�ned by (3) is decreasing on therange � 2 [0; 1]. Taking the derivative, we haven�0(�) = (xTv + yTu) + 2�uTv= (xT �v + yT �u) + xT (v � �v) + yT (u� �u) + 2�uTv= �xTy + xT (v � �v) + yT (u� �u) + 2�uTv: (32)However, we can use Lemma 4.1 and relations (8), (14), and (16) to obtainjxT (v � �v)j � kxBkkvB � �vBk+ kxNkkvN � �vNk� C3C9���k + C4C7��2� (C3C9 + C4C7)���k; (33)13



where we have used � � �k in the last inequality. A similar bound can be obtained forjyT (u� �u)j. For the �nal term in (32), we havejuTvj � C28�2�2 � C28�2��k: (34)Substituting these relations in (32) and using the de�nition of C13, we obtainn�0(�) � [�n+ C13�2�k]�:It follows from (24) that the term in brackets is negative, and hence �0(�) � 0 for all� 2 [0; 1].Finally, we observe that the step length ~� actually selected by the procedure will be atleast as long as the upper bound of (27). Hence, using (33), (34), and the de�nitions of C13and C14, we have (x+ ~�u)T (y + ~�v)� xTy(1� ~�) + jxT (v � �v)j+ jyT (u� �u)j+ juTvj� (xTy)C12�2�k�
t + 2(C3C9 + C4C7)���k + C28�2��k� (xTy)�k�
t [C12 + C13=n]�2= (xTy)�k�
tC14�2:Therefore (26) holds. Acceptance of this step follows from (25), since we have (x+ ~�u)T (y+~�v)=n � ��.We close this section with a result that is important in de�ning the onset of the algorithm'sfast phase.Lemma 4.6 There is a constant � < 1 such that�k+1�
tk+1 � � �k�
tk ; 8k � 0: (35)Proof. When the safe branch of the main algorithm is taken at iteration k, we have fromthe proof of Theorem 3.2 that(xk + ~�u)T (yk + ~�v)=n � �1 � 14!��k;while the value of t is unaltered. In the subsequent call to improve, the value of t might beincremented. Whenever this happens, we are guaranteed that the complementarity gap �decreases by a factor of at least �, so the ratio �=�
t will also decrease by a factor of at least�=�
 < 1. Hence, when the safe branch is taken, we have�k+1�
tk+1 � �1� 14!� �k�
tk :14



When the fast branch is taken, we have t t+ 1 and(xk + ~�u)T (yk + ~�v)=n � ��k;so the ratio �=�
t decreases by a factor of at least �=�
. The comments above ensure that thesubsequent call to improve can only accentuate this decrease, so in this case we have�k+1�
tk+1 � ��
 �k�
tk :The result is obtained by de�ning � = max 1� 14! ; ��
! :5 Local ConvergenceIn this section, we state and prove our two main local convergence results. First, we de�ne athreshold value of �k=�
tk below which both the main algorithm and the procedure improvetake only fast steps. Second, we show that the resulting superlinear convergence has Q-orderI + 2.Theorem 5.1 De�ne � = 2(C5 + C6) exp C8�1 � �! ; (36)and let K1 be the smallest index such that �K1 � 1=2,C14�2 �K1�
tK1+I � �; (37)and �K1 � min  1; nC13�2! : (38)Then the fast branch is taken in the main algorithm and, moreover, I fast steps are taken inthe call to improve.Proof. Existence of K1 is guaranteed by Lemma 4.6. We choose any k � K1. Our proofproceeds by showing �rst that the step taken from (xk; yk) in the main algorithm is a faststep. We then prove by induction that I fast steps are taken inside the procedure improve.Our main tool in both cases is Theorem 4.5.For the �rst part of the proof, we apply Theorem 4.5 with(x; y) = (xk; yk); t = tk; 
 = 
k: (39)15



Note that the point (x; y) satis�es the assumptions of Lemmas 4.2 and 4.3 (by de�nition ofK1, rk, �k, etc.) and the conditions (12) and (13) (trivially). Clearly also xkjykj � 
k�k forall j = 1; � � � ; n, and the condition (24) also holds. BecauseC14�2�k�
t = C14�2 �k�
tk � C14�2 �K1�
tK1 � C14�2 �K1�
tK1+I � �;the condition (25) also holds. Hence the conditions of Theorem 4.5 are satis�ed by thechoices (39), and therefore a fast step is taken by the main algorithm.We turn now to the procedure improve. Our aim is to show inductively that if (x; y) isthe current vector pair at the commencement of the i-th iteration of this procedure, thenk(xk; yk)� (x; y)k � "2(C5 + C6) i�1Yl=1(1 + C8�l)#�k: (40)Moreover, we show that a fast step is taken from this vector (x; y) during the i-th iterationof improve. Note for future reference thatlog i�1Yl=1(1 + C8�l) = i�1Xl=1 log(1 + C8�l) � i�1Xl=1 C8�l � C8�1� �;and so 2(C5 + C6) i�1Yl=1(1 + C8�l) � �; i = 1; � � � ; I:Consider the case i = 1, that is, the �rst iteration of improve. We aim to use Theorem4.5 again, so we start by checking that the point just generated by the main algorithmsatis�es the assumptions of this theorem. In other words, the choices(x; y) = (xk; yk) + �k(u; v); t = tk + 1;must be shown to satisfy these assumptions. It is easy to see that the assumptions of Lemmas4.2 and 4.3 and the condition (12) are satis�ed. To see (13), note that the fast step justtaken at iteration k of the main algorithm was computed with an exact coe�cient matrix,that is, we have (�u; �v) = (u; v). Hence we can apply Lemma 4.3 to deduce thatk(xk; yk)� (x; y)k � k(u; v)k = k(�u; �v)k � 2(C5 + C6)�k:Thus the bound (40), and therefore also (13), holds for this point (x; y). The conditions (24)and xjyj � 
� clearly hold, while (25) also holds becauseC14�2�k�
t = C14�2 �k�
tk+1 � C14�2 �k�
tk+I � C14�2 �K1�
tK1+I � �:Hence Theorem 4.5 applies, and we have shown that a fast step is taken on the �rst iterationof improve. 16



We now consider the general iteration i of the internal loop of improve. We assume thatour assertions hold for iterations 1 through i� 1. Let (x�; y�) denote the value of (x; y) atthe start of iteration i � 1, and let (u�; v�) be the search direction calculated during thisiteration, while as before (x; y) is the current point at the start of iteration i. To obtain anestimate of k(xk; yk)� (x; y)k, we note by our inductive hypothesis (40) thatk(xk; yk)� (x�; y�)k � "2(C5 + C6) i�2Yl=1(1 + C8�l)# �k:We now apply Lemma 4.4 to the step (u�; v�) taken during iteration i� 1, with � replacedby 2(C5 + C6)Qi�2l=1(1 + C8�l), to �nd thatk(xk; yk)� (x; y)k� k(xk; yk)� (x�; y�)k+ k(x�; y�)� (x; y)k� 2(C5 + C6) i�2Yl=1(1 + C8�l)�k + k(u�; v�)k� 2(C5 + C6) i�2Yl=1(1 + C8�l)�k + C8 "2(C5 + C6) i�2Yl=1(1 + C8�l)# ��� "2(C5 + C6) i�2Yl=1(1 + C8�l)# (1 + C8�i�1)�k:The �nal inequality follows from the fact that �� � �i�1�k, since (x�; y�) is arrived at bytaking i � 1 fast steps (one step in the main algorithm, followed by i � 2 iterations of theimprove loop), at each of which a reduction factor of at least � is achieved. We have nowshown that the bound (40) continues to hold at iteration i. It is easy to check that theremaining conditions required by Theorem 4.5 hold. We mention only (25), which holds fort = tk + i becauseC14�2�k�
t = C14�2 �k�
tk+i � C14�2 �k�
tk+I � C14�2 �K1�
tK1+I � �:Hence, we can apply Theorem 4.5 again to deduce that a fast step is taken at iteration i,and our result is proved.Our �nal result is to show high-order convergence of the sequence f�kg to zero. We showthat this convergence has a Q-order of at least I + 2, that is, for any � > 0lim supk!1 �k+1�I+2��k = 0:An equivalent characterization of the Q-order I +2 convergence is the inequality (41) below(see Potra [13]).Theorem 5.2 The subsequence f�kg, k = 0; 1; � � �, converges to zero with Q-order I + 2,that is, lim infk!1 log �k+1log �k � I + 2: (41)17



Proof. Consider k � K1. Since a fast step is taken by the main algorithm and all Iiterations of improve, and since Theorem 4.5 applies at all I + 1 steps, we can apply theinequality (26) I + 1 times to bound �k+1 in terms of �k. The process yields�k+1 � CI+114 �2(I+1) �I+2k�
(I+1)tk+I(I+1)=2 : (42)It follows from Lemma 4.6 and (42) that�k+1�k � CI+114 �2(I+1)�
I(I+1)=2  �k�
tk !I+1 ! 0; (43)that is, f�kg converges to zero at least Q-superlinearly.By taking logarithms, we obtain from (42) thatlog �k+1 � log CI+114 �2(I+1)�
I(I+1)=2 !+ (I + 2) log �k � (I + 1)tk log �
:We will assume that k is su�ciently large such that �k < 1. From the above,log �k+1log �k � (I + 2) + log CI+114 �2(I+1)�
I(I+1)=2 ! = log �k � (I + 1) log �
 tklog �k : (44)Obviously, as k!1, the second term in the right-hand side vanishes. If we can show thatthe third term also goes to zero, then the conclusion (41) follows. Since tk � (I + 1)k + 1,it su�ces to prove limk!1 klog �k = 0: (45)Suppose otherwise. Then there exist � 2 (0; 1) and a subsequence f�kgK � f�kg such thatfor all k 2 K klog �k � 1log � ; or equivalently �k � �k:From (43), there exists a positive integer J such that for all k � J , �k+1 � �2�k. Hence, forall k > J and k 2 K, �k � �k �  �2!k�J �J :That is, for all k > J and k 2 K, 2k � �J2J=�J . This is clearly a contradiction.6 Numerical ExamplesWe include some preliminary numerical results that compare the behavior of our algorithmwith the method of [18], in which improve is vacuous (I = 0).18



Our test problems have M = A�AT , where A 2 IRn�n is dense with elements drawnfrom a uniform distribution in [�1; 1], and � is a diagonal matrix with diagonal elements�ii = 104�i, where �i is drawn from a uniform distribution in [0; 1]. (We introduce thisscaling to aviod making the problems too easy.) A solution (x�; y�) is generated so thateven-numbered components of x� and odd-numbered components of y� are zero, and q ischosen so that the nonzero components of both vectors are uniformly distributed in [0; 1].The algorithmic constants have the following values:
min = 10�6; 
max = 10�4; �min = 10�4; �max = :3;�
 = :5; � = min(p�max�min; 12�
); � = :8:Experience shows that fast steps usually do not occur until � becomes quite small. Hence,we modify the algorithm slightly so that the fast step branch of the conditional statementsin both the main algorithm and improve is not activated until � � 1. This modi�cationdoes not alter any theoretical convergence properties of the algorithm.The value of ~� for the safe step at major iteration k is chosen as�k = mid(�min; �k=pn; �max);where mid() denotes the median of its three arguments. For safe steps in improve, we set~� to the constant �max. Termination occurs when �k � 10�10.Performance of the algorithm for � = :8 and various values of I is shown in Table 1. Foreach data set, we noted the number of factorizations (which equals the number of iterationsof the main algorithm), the number of back solves, and the total number of steps taken inthe improve phase. We averaged these �gures over �ve sets of data to obtain the �gures inTable 1.Clearly, the improve phase decreases the number of factorizations, which is the dominantpart of the cost for all reasonable problems. WhenM is sparse, however, the extra backsolvesand other operations required to perform each improve step are not insigni�cant, so weshould avoid taking an excessively large value of I. For our test problems, either I = 3 orI = 5 would seem to be reasonable. Our tests showed that any value of � reasonably closeto 1 gives almost identical results to our particular choice � = :8.7 Final CommentsWe have analyzed an infeasible-interior-point algorithm that reuses matrix factors to accel-erate convergence. In addition to the usual global convergence properties, the new algorithmpossesses a local convergence rate of Q-order I + 2. Mehrotra [8] obtained the same conver-gence rate for his feasible-interior-point predictor-corrector linear programming algorithm.Zhang and Zhang [20] analyzed an infeasible-interior-point algorithm with I = 1 that asymp-totically requires only one matrix factorization per iteration. However, they only obtainedQ-order 2 convergence instead of Q-order 3. 19



Table 1: Average performance of the algorithm for �ve data setsn = 20 n = 200factorizations 36.2 47.2I = 0 solves 49.8 65.2improve steps 0 0factorizations 26.2 36.4I = 1 solves 71.8 100.6improve steps 20.4 21.0factorizations 19.4 31.6I = 3 solves 95.4 126.4improve steps 41.4 35.4factorizations 17.2 30.4I = 5 solves 114.0 136.4improve steps 53.8 43.2The higher-order convergence rates are mainly of theoretical interest. It is di�cult toobserve convergence rate higher than cubic in numerical tests, even on very small problems.However, reuse of matrix factors does tend to reduce the total number of factorizationsat the cost of increasing the number of back solves, as we show in our numerical results.Since matrix factorizations are usually a good deal more expensive than back substitution,the potential reduction in computational work could be signi�cant for large-scale problems.For linear programming, the practical e�ectiveness of reusing matrix factors is already welldocumented [5, 9].AcknowledgmentWe thank two anonymous referees for their constructive comments and suggestions.References[1] J. Ji, F. A. Potra, and S. Huang, A predictor-corrector method for linear comple-mentarity problems with polynomial complexity and superlinear convergence, Reports onComputational Mathematics No. 18, Department of Mathematics, University of Iowa,Iowa City, August 1991.[2] J. Ji, F. A. Potra, R. A. Tapia, and Y. Zhang, An interior-point algorithm withpolynomial complexity and superlinear convergence for linear complementarity problems,Report No. 91{23, Department of Mathematical Sciences, Rice University, Houston,July 1991. 20
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